
Remote Sensed Spectral Imagery to Detect Late

Blight in Field Tomatoes

MINGHUA ZHANG mhzhang@ucdavis.edu

ZHIHAO QIN

XUE LIU

Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, USA

Abstract. Late blight, caused by the fungal pathogen Phytophthora infestans, is a disease that quickly

spreads in tomato fields under suitable weather conditions and can threaten the sustainability of tomato

farming in California, USA. This paper explores the applicability of remotely sensed images to detect

disease spectral anomalies for precision disease management. We used the indices approach and generated

a 5-index image that we used to identify the disease in tomato fields based on information from field-

collected spectra and linear combinations of the spectral indices. Field results indicated that we were able

to identify five clusters in the image space with small overlaps of a few clusters. Using the identified 5-

cluster scheme to classify the tomato field images, we were able to successfully separate the diseased

tomatoes from the healthy ones before economic damage was caused. Hence, the method based on a 5-

index image may significantly enhance the capability of multispectral remote sensing for disease dis-

crimination at the field level.
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analysis

Introduction

The concept of precision agriculture is widely accepted for site-specific farm man-
agement to effectively control pests and reduce farm costs/environmental impacts
(Evans et al., 2003; Fitzgerald et al., 2004). Late blight, caused by the fungal path-
ogen Phytophthora infestans, is a disease that quickly spreads in tomato fields under
suitable weather conditions and can threaten the sustainability of tomato farming in
California. This paper explores the applicability of remotely sensed images to detect
disease spectral anomalies for precision disease management.
California produces 94% of the United States’ (USA) processing tomatoes

(USDA, 2002) and close to 74% of fresh market tomatoes. To assure sustainable
large-scale crop production, California tomato growers depend heavily on pesticide
applications, especially for fungicides, because currently there is no curative fungi-
cide available. The treatment window for controlling fungal diseases such as late
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blight, Phytophthora infestans, is one week. Therefore, the majority of growers use
calendar-scheduled pesticide sprays to protect the fields from diseases. However, the
large amount of pesticide use not only causes potential risks to the environment and
ecosystem but also increases the farming cost (CDPR, 2002). This large-scale
farming requires timely detection of diseases for precision pest management to avoid
overuse of pesticides. We used the indices approach and generated a 5-index image to
identify the disease in tomato fields based on information from field-collected spectra
and linear combinations of the spectral indices.
Spectral measurements of crop diseases offer valuable information on the state of

the crop for precision agriculture. When repetitive large-scale estimates are required,
remote sensing is probably the only feasible method for obtaining this data (Steven
and Clark, 1990; McDonald et al., 1998; Fitzgerald et al., 2004). Literature indicated
that the spectral reflectance of green vegetation in the red band (0.6–0.7 lm) is most
sensitive to leaf chlorophyll and pigment contents while the near infrared (NIR) band
(0.7–0.9 lm) is most sensitive to biomass (Thomas and Oerther, 1972; Toler et al.,
1981; Blazquez and Edwards, 1983; Kurschner et al., 1984; Blakeman, 1990). More-
over, the quantity of chlorophyll content of green plants directly correlates to the
healthiness of the plants. Biologically, plants are in various stress stages when under
unfavorable growing conditions. When tomato plants are infected by Phytophthora
infestans, the chlorophyll content will decrease. Generally, the stressed plants have
lower absorption of red light and higher absorption of NIR radiation (Lillesand and
Kiefer, 1994; Guyot, 1990; Hatfield and Pinter, 1993). These spectral characteristics of
green plants have been used to evaluate the stresses of various crops (Chapelle and
Kim, 1992; Shibayama et al., 1993; Zhang et al., 2002; Fitzgerald et al., 2004).
Phytophthora infestans (Agrios, 1997) is an aggressive fungus that spreads quickly

in tomato fields. Once the tomatoes are infected, the symptoms of late blight first
appear on leaves, which will gradually change color from green to yellow, then the
fungus will infect the stems and fruits. Growers will face economic loss if the early
infection is not properly treated. Developing a remote sensing method to detect late
blight at field level would be of great value to the tomato industry and the state
economy.
Due to the difference in light response to various biological features, scientists have

used an indicator approach for identifying plant stresses (Tucker, 1979; Wiegand
et al., 1991; Zhang et al., 1997; Gitelson and Merzlyak, 1998). The existing indica-
tors are mostly derived from various combinations of red and NIR spectral bands to
evaluate biomass and detect water deficit and diseases (Tucker, 1979; Blazquez and
Edwards, 1983; Huete, 1988; Shibayama et al., 1993; Bausch, 1993; Huete et al.,
1994). However, remote sensing indices have not been evaluated for monitoring and
evaluating tomato late blight.
The objective of the study was to develop a method for application of multi-

spectral remote sensing to detect the diseased tomato plants. Several possible indices
derived from red and NIR bands of the multispectral remote sensing data were
evaluated for discriminating the diseased tomato plants. The method based on the
effective indices was developed to explore the potential applications of the
multispectral remote sensing to detect the diseased tomato plants. Therefore, our
analysis in the study mainly involved the following three parts: (1) field spectral
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analysis to determine whether spectral features of diseased plants can be differenti-
ated, (2) numeric analysis to determine the best combination of red and NIR bands
for effective separation of diseased plants and (3) validation analysis to test the
developed image identification method for late blight on tomatoes with available
ground truth information.

Materials and methods

Field spectral data collection

Field spectra of tomato plants were collected from four fields near King City in
Salinas Valley, California. A handheld spectrometer GER 2600 (Geophysical &
Environmental Research Corporation, Milbrook, New York USA) with 10 nm
spectral sensitivity was used to collect the spectral data from 1 m above tomato
canopies at a field of view of 23� at various infection stages. Altogether, 66 spectral
samples were obtained in September 1998 under clear sky conditions.
Four infection stages were assessed (Agrios, 1997): Stage 1 (LB1)—one lesion on

one or two canopy leaves, Stage 2 (LB2)—one lesion on more than two canopy
leaves (Figure 1a), Stage 3 (LB3)—two lesions on one to many canopy leaves
(Figure 1b), Stage 4 (LB4)—two lesions on over half the canopy leaves. The selected
rating for the disease infection was the common rating for the disease assessment in
California. Economic impact of the disease started at stage 3 of infections. Among
the 66 collected samples, 22 were for healthy tomato plants, 11 for LB1, 12 for LB2,
17 for LB3, and 4 for LB4 (Zhang et al., 2002).

Multispectral data acquisition and tomato fields

ADAR (Airborne Data Acquisition and Registration, using system 5500 airborne
sensor from Positive System, Inc. Idaho, USA, http://www.possys.com) broadband
system was used to acquire the multispectral image of four broad TM bands (blue,
green, red and near infrared) and 1 m pixel size. Two images were obtained for two
fields: a late blight diseased tomato field in Yolo County, California on August 15,
1999 and a late blight diseased tomato field in Salinas Valley on September 17, 1997.
Healthy plants were dominant in both fields. The disease infection stages varied

from LB1 to LB4 at the time of image acquisition for the two fields. These selected
tomato fields were irrigated and tomatoes were planted in rows with identical
spacing. Usually, late blight occurred on tomatoes when the crop was at early fru-
iting phenological stage. The soil types of the fields ranged from loam to clay loams
in Yolo field to clay loams to sandy loams in Salinas field. Because there were almost
full canopy covers at the time of sampling, soil effects on each image pixel can be
minimal. In addition, the soil covers in the ground were similar from each sampling
site, the soil contribution to each pixel can be viewed as almost equal share.
With multispectral remote sensed images, one may think that the discrimination of

diseased plants can be done through comparison of image indices or pixel DN values
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with the known class (infection status). In fact, this represents to directly identify the
diseased plants in images and this direct identification can only be done if the
spectral features of diseased plants are distinctly different from the healthy plants.
However, the real world is much more complicated than this. In many cases, the

Figure 1. (a) Tomato leaves with late blight (Courtesy R.E. Stall) at infection stage 2. (b) Tomato

leaves with late blight infection stage 3.
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spectral features of diseased plants are usually not so obvious in the images for direct
identification because of their morphological similarities. For example, it is very
difficult to visually identify the diseased plants on the image shown in Figure 2a and
b. Figure 2a shows the false color composite image of the diseased tomato field in
Yolo County. Redder color associated with healthier plants appears at the right
upper part of the field, while brighter light yellow green color associated with less
dense crop canopy appears at the left lower corner of the field (Figure 2a). More-
over, different colors within the strips show that some lines of tomato plants within
the same strip are denser biomass than others. This might be attributed to the slight
difference in water and nutrient distribution in the field. The black line in the middle
of the field indicates an irrigation ditch. The dark spots in the field were the diseased
LB3 or LB4 plants. Some dots were the bare soil or dead plants caused by the disease
as observed in the field during sampling. The diseased plant pixels were sparsely
distributed in the field (Figure 2a). The size of these spots on the canopies generally
ranged over a few meters, covering a few pixels in the image.
Figure 2b shows the false color composite image of the diseased tomato field in

Salinas Valley. The circled locations in the field were identified as LB3 or LB4 in the
ground observation during the imaging. The darker lines with black spots were the
water ditches for irrigation of the field. The black spots on the ditches were the bare
areas. The bright strip in upper part of the image was where a disease resistant
variety was planted. Since direct identification of diseased plants is very difficult on
the image such as those shown in Figure 2a and b, we have to develop more
applicable method for remote sensing analysis to explore potential precision disease
management. In the following, we present the work in developing such remote
sensing analysis methods for pest management in tomato farming.

Image analysis methods

Five feature vector indices development. Spectral reflectance of vegetation canopy in
some wavelength ranges such as infrared is obviously related to the health of plants
(Yang et al., 1988). In our case, the healthy plants have the highest digital number
(DN) in the near infrared (NIR) band while the LB4 plants have the lowest DN. The
LB1 and 2 plants should have DN values in between the two extremes. Several
combinations of red and NIR bands have been commonly developed to relate the
spectral reflectance of vegetation canopy to their biological features (Tucker, 1979;
Kimes et al., 1981; Huete 1988; Huete et al., 1994).
Based on previous research, a numeric analysis was employed to select the best

index from the combinations of red and NIR bands for discriminating healthy and
late blight diseased plants. Hence, the difference in DN values of healthy and dis-
eased plants in the NIR band was used as a standard for assessing the effectiveness of
these combinations of red and NIR bands. The rule for selecting the most effective
indices was that, for a combination of red and NIR bands, if the difference in DN
values after transformation of the red and NIR bands was larger than the difference
in DN values in the NIR band imagery, this combination of red and NIR bands was
selected for enhancing separation between the healthy and diseased tomato plants.
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Figure 2. (a) Diseased tomato field (24 ha) in Yolo County, CA imaged in August 1999. (b) Diseased

tomato field (16 ha) in Salinas Valley, CA imaged in September 1997.
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The symbols used in this numeric analysis are as follows: Y2, X2 represent the pixel
DNs of healthy plants in the red and NIR bands, and Y1, X1 represent the pixel DNs
of diseased plants in the red and NIR bands, respectively. The spectral separation
ability (SP) between the healthy and diseased plants in the NIR band can be defined as

SP ¼ X2=X1: ð1Þ

Since several combinations of the red and NIR bands are used for the analysis, SPnew

is referred to as the separation ability after transformation. Therefore, using the
combination NIR/R to transform the red and NIR images, the pixel DNs in the
output image will be X2 /Y2 for pixel value of healthy plants and X1/Y1 for late blight
diseased plants, which results in:

SPnew ¼
X2=Y2

X1=Y1
¼ ðX2=X1Þ�ðY1=Y2Þ: ð2Þ

Since (Y1/Y2)>1, we can logically expect that

SPnew > SP: ð3Þ

Therefore, the ability to separate healthy plants from diseased ones improves after
the transformation.
Similarly, for the combination , the product is

SPnew ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2=Y2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X1=Y1

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX2=X1Þ�ðY1=Y2Þ
q

: ð4Þ

Since,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðY1=Y2Þ
p

> 1 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX2=X1Þ
p

<ðX2=X1Þ, we cannot determine whether
SPnew> SP. Thus, this combination does not provide conclusive results about the
effectiveness of the transformation.
For the combination NIR)R,

SPnew ¼
ðX2 � Y2Þ
ðX1 � Y1Þ

: ð5Þ

Since X1Y2 < X2Y1, then (X2)Y2)/(X1)Y1)>X2/X1. This leads to SPnew> SP,
indicating that the transformation is able to improve the separation ability.
For the combination NIR+R, the SPnew can be computed as

SPnew ¼
ðX2 þ Y2Þ
ðX1 þ Y1Þ

: ð6Þ

If it is expected Spnew> SP, then (X2+Y2)/(X1+Y1)>X2 /X1, which leads to
X1Y2>X2Y1. However, this relation is clearly incorrect. Therefore, the assumption
of SPnew> SP is not always true. In other words, the separation ability after this
transformation cannot be further improved.
For the combination (NIR)R)/(NIR+R), new separation ability is as follows:
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SPnew ¼
ðX2 � Y2Þ=ðX2 þ Y2Þ
ðX1 � Y1Þ=ðX1 þ Y1Þ

:

Since all the variables Xi and Yi are larger than 0, Y1>Y2 and X2>X1, then
X1X2(Y1)Y2) + Y1Y2(X2)X1) + Y1X2

2)Y2X1
2>0. Thus, ((X2)Y2)/(X2+Y2))/

((X1)Y1)/(X1+Y1))>X2/X1, which is SPnew>SP. The ability to separate after this
transformation can further be enhanced.
Transformation with the combination (NIR+R)/(NIR)R) will lead to

SPnew ¼
ðX2 þ Y2Þ=ðX2 � Y2Þ
ðX1 þ Y1Þ=ðX1 � Y1Þ

: ð8Þ

Provided that variables Xi and Yi are larger than 0, Y1>Y2 and X2>X1, one can
derive that X1(X2+Y2)<X2(X1+Y1) and (X1)Y1)< (X2)Y2). Thus, SPnew<SP,
indicating that this combination is not able to improve the separation ability after
this transformation. Using the combination

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(NIR+R)=(NIR-R)þ 0:5
p

to trans-
form, the ability to separate the difference in the output image will be

SPnew ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:5þ ðX2 � Y2Þ=ðX2 þ Y2Þ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:5þ ðX1 � Y1Þ=ðX1 þ Y1Þ
p : ð9Þ

Under the conditions Xi>0, Yi>0, Y1>Y2 and X2>X1, one is not able to prove
that X1Y1 must be greater or less than X2Y2. Therefore, it is not certain if the SPnew is
greater than SP after the transformation.
The above analysis indicates that, for the tomato disease DN values, only the

indices of the simple ratio NIR/R, the simple difference NIR)R, and the normalized
difference vegetation index NDVI are able to enhance the differentiation between
healthy and diseased plants after the transformation. Therefore, together with the
red and near infrared bands (R, NIR) and the three selected indices, a new feature
space is formed with the five indices expressed as a feature vector:

Feature Vector ¼ (R, NIR, NIR/R, NIR-R, (NIR-R)/(NIR+R)): ð10Þ

to be utilized in the image analyses to demonstrate the usefulness of multispectral
remote sensing images in monitoring tomato disease.

Visualization, minimum noise fraction transformation and pixel purity index. In order
to identify the diseased plants from the healthy ones in the image, one has to
determine the criterion for comparison of the pixels with various health levels.
Visualization analysis is one of the methods in remote sensing to identify the pure
pixels (endmembers) representing the degrees of the plant health. Therefore, after the
above feature vectors were computed, we then used the n-dimensional visualization
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function embedded in the Environment for Visualization Images (ENVI, 1999)
software together with Minimum Noise Fraction (MNF) transform and Pixel Purity
Index (PPI) to identify spectra classes of diseased tomato plants.
The principle of the n-dimensional visualization was that the spectrum of every

pixel in the multi-band images could be thought of as points in an n-dimensional
scatter-plot, where n was the number of indices. The coordinates of the points in the
n-space consisted of ‘‘n’’ values that were simply the DN values in each index for a
given pixel. MNF transform is essentially two cascaded principal components
transformations. The first transformation, based on an estimated noise covariance
matrix, de-correlates and rescales the noise in the data. The second step is a standard
principal components transformation of the noise-whitened data. By using only the
coherent portions, the noise is separated from the data, thus improving spectral
processing results. PPI, however, finds the most ‘‘spectrally pure’’ pixels in multi-
spectral images. The most spectrally pure pixels typically correspond to mixing
endmembers. The PPI is calculated by repeatedly projecting n-dimensional scatter-
plots onto a random unit vector. The procedure is iterative. For each step, the
extreme pixels in each projection and those falling into the ends of the unit vector are
recorded in the analysis. At the same time, total number of iterations is also noted.
The iteration will be stopped when the pure pixels are identified for the clusters.
Using the pure pixels’ spectra in the remote sensing bands considered, we can per-
form a comparison of all the pixels in the image for classification to separate the
diseased plants from healthy ones.
After projecting into a two-dimensional plane for visualization, the distribution of

these points in n-space could be used to estimate the number of spectral endmembers
and their pure spectral signatures (ENVI, 1999). Therefore, along with using the
n-dimensional visualization function of ENVI, MNF and PPI were also applied to
locate, identify and cluster the purest pixels and most extreme spectral responses in a
dataset.
The classification thresholds were determined interactively through visually

representing and dynamically observing all the pixels in a feature space. The
corresponding pixels of each cluster generated by these thresholds were then used
as regions of interest (ROI) to calculate the mean image spectrum for each
cluster.
Although the soils could be treated as a uniform background for the images, the

selected images may still be influenced by soil because the field may or may not be
fully covered by the tomato canopies. Therefore, soil background was included as a
candidate class during image analysis and classification. After conducting a number
of different rotations in the visualization, at the end, five candidate classes were
considered in the image analysis: C1 to C5. This 5-cluster classification scheme was
the best result in our case. Accordingly, the diseased plants were detected from the
imagery with the assistance of ground truth. For the effective interpretation of each
cluster in connection with the health status of the plants, the mean DN value of each
cluster in each band of the new images must be calculated and compared. The key to
the interpretation was that the lower mean DN value in index 3, 4, and 5 (Table 1)
indicated severe infection. A high mean DN value in these three indices represented
the healthy level of the plants. As a contrast, the high mean DN value in index 1
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(Table 1) implied severe infection while a low DN value meant healthy plants.
Therefore, combining the visualization analysis with the spectral variations of to-
mato plants in relation to their infection severity, we were able to identify the pixel
distribution patterns in the n-dimension feature space and interpret the patterns for
classifying the images.

Results

Figure 3a shows the average spectral curves for each infection stage. Figure 3b
displays the confidence bands for each infection stage in the red and NIR ranges.
The largest spectral difference was observed in the NIR range. Figure 3b shows that
approximately 20% of the spectral variations for LB3 plants overlapped with that
for the healthy plants in the NIR range. Approximately 80% of spectral variations
for healthy plants overlapped with that for LB1 plants, and 50% of spectral varia-
tions of healthy plants partly covered with LB2 plants. Therefore, the small overlap
of spectral variations between LB3 plants and healthy plants indicated that they
could be effectively separated in their spectra, while the high percentage of overlap
between healthy plants and LB1 and LB2 plants indicated a very low separation.
Severely diseased plants were associated with much higher spectral reflectance in

the red range and lower spectral reflectance in the NIR band. Figure 4a and b show
the changes of spectral reflectance between visible and NIR ranges for each infection
stage. Consequently, these field spectral characteristics might be used for crop dis-
ease detection in remote sensing. Late blight diseased plants can be differentiated
from healthy tomato plants when the infection stage reaches LB3 and LB4. This
observation laid the foundation for our subsequent analyses.
As indicated in Figure 4b, the healthy tomato plants had the highest reflectance,

while diseased plants had lower reflectance within the NIR range (0.7–0.9 lm
wavelength). In this range, the spectral reflectance of the diseased plants rapidly
decreased with the severity level. The lowest reflectance, apart from soils, was found
for the LB4 plants. However, healthy tomatoes had the lowest reflectance within the
red range (0.6 m to 0.7 lm), while the LB4 plants had the highest (Figure 4a) apart
from soils.
The numeric analysis of selecting the better indices indicated that, for the tomato

disease spectra, only the indices of the simple ratio NIR/R, the simple difference
NIR)R, and the normalized difference vegetation index NDVI were able to enhance

Table 1. The mean DN value order in each index for the 5 clusters for the image of Yolo County,

California

Index Mean DN value order for the 5 clusters

Index 1 (R) C1>C4>C5>C2>C3

Index 2 (NIR) C1<C4<C5<C3<C2

Index 3 (NIR/R) C1<C5<C4<C3<C2

Index 4 (NIR)R) C1<C4<C5<C2<C3

Index 5 (NDVI) C1<C4<C5<C2<C3
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the differentiation between healthy and diseased plants after the transformation.
Therefore, these indices together with red and near infrared bands were used in the
image analysis to monitor tomato disease.

Figure 3. (a) Mean spectra of tomato plant canopies and soil background. (b) The spectral fluctuation

ranges of the canopies with ±2 standard deviations. H-healthy plants, 1-infection stage 1(LB1), 2-infec-

tion stage 2 (LB2), 3-infection stage 3 (LB3), 4-infection stage 4 (LB4), s-soils.
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Using the approach described above for the image with a 5-index image (R, NIR,
NIR/R, NIR)R, and NDVI), the diseased tomato field in Yolo County was
investigated and analyzed. Each index was used as a vector to create a 5-dimensional

Figure 4. Comparison of healthy canopy spectra with infected ones within (a) the visible range and

(b) the near infrared range. H- healthy plants, 1-infection stage 1(LB1), 2-infection stage 2 (LB2), 3-

infection stage 3 (LB3), 4-infection stage 4 (LB4), s-soils.
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feature space. Then we performed visualization analysis of all pixels projected into
the space for potential cluster identification. Rotating the space to a proper position
to give the best cluster identification of the depicted pixels, the 2-dimensional planes
were obtained as shown in Figure 5a and b, which indicated that three clusters could
be clearly separated: (1) cluster C1; (2) cluster C2; (3) unclassified pixels (the rest, not
annotated). Cluster C1 only has a few pixels, whose positions were relatively far
from all the other pixels in these projected 2-dimensional planes (Figure 5a). As
shown in Figure 5a, after cluster C1 has been identified, the rest pixels were
implicitly classified as the other cluster, which might involve several sub-clusters
hence need to further rotate (Figure 5b and c) to identify these sub-clusters. Cluster
C2 consisted of numerous pixels occupying the upper center of the 2-dimensional
plane (Figure 5b). The values of the pixels spread out densely in a triangular style in
the plane. Although the pixels of cluster C2 had some overlaps with those scattering
in the lower left part of the plane (Figure 5b), they were still very clearly clustering
and hence could be distinguished from those designated as the unclassified pixels.
Figure 5c shows the resultant position that provided the best classification of the

pixels. Thus, three sub-clusters can be identified in this plane (Figure 5c). Since the
general distribution of these unclassified pixels in Figure 5c appeared as a tilted bar,
the classification was based on their relative density in the space. According to the
density of pixel distribution, three patterns could be identified in Figure 5c in spite of
heavy overlay. The left upper part of the bar was identified as a cluster, dubbed as
cluster C3. The right lower part of the bar was another cluster, dubbed as cluster C5.
Finally, the pixels between the two extremes could be distinguished as another
cluster dubbed cluster C4. Although there were some overlaps among the three
clusters, the identification of these pixels could be helpful in interpreting the image
for disease detection.
After classifying all the pixels in the feature space into their separate clusters, we

continued the analysis to interpret the clusters. The purpose was to identify which
cluster represented the healthy plants and which cluster represented the infected
plants. Using the five clusters, the next step was to differentiate the clusters repre-
senting the healthy and diseased plants. This could be done through calculating the
mean DN vector of each cluster with reference to the five-index image using the
technique of Region of Interest (ROI) (ENVI, 1999). Figure 5d shows the mean DN
curves corresponding to the five clusters in the image indices.
The clue for the cluster interpretation could be obtained from analyzing the

changes of their relative mean DN value among the five indices of the image
(Table 1). The three new indices (NIR)R, NIR/R, NDVI) maintained the same
characteristics of the spectra of the healthy and diseased plants as they were in the
NIR band, i.e., the pixel DN values in these new indices remaining in the spectral
magnitude order: healthy plants>LB3 plants>LB4 plants> soils. Therefore, the
five clusters could be in three groups: healthy plants, diseased plants, and soils. Since
cluster C1 had the lowest mean DN value in indices 3, 4, and 5, and the highest DN
value in index 1 (Table 1), this cluster may be the soils or LB5 plants. As a contrast,
cluster C2 had the highest mean DN value in indices 3, 4, and 5, and the lowest mean
DN value in index 1 (Table 1). This must be the healthy plants cluster. Cluster C3
had similar spectral features as cluster C2, very high mean DN values in indices 3, 4
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Figure 5. Validation of the method to the tomato field in Yolo County of California, (a) identification

of cluster 1, (b) clusters 1 and 2, and (c) sub-clusters 3, 4, and 5 in the 5-dimensional feature space, (d)

mean digital number values of the 5 clusters in the 5 index images (indices 1 through 5 refers to R,

NIR, NIR/R, NIR)R, and NDVI, respectively, Table 1), (e) results of applying the 5 clusters to clas-

sify the subset images marked in (a).
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and 5 and low mean DN value in index 1. However, the mean DN values of this
cluster in indices 3, 4, and 5 were slightly lower than that of cluster C2. The mean
DN value in index 1 of cluster 3 is also slightly higher than that of cluster C2. Thus,
cluster C3 could be classified with the LB1 plants. Since the mean DN value of C3
was so close to cluster C2, some healthy plants might also be included in this cluster.
Clusters C4 and C5 had a mean DN value much lower in indices 3, 4, and 5 than
clusters C2 and C3. Thus, these pixels should be LB3 and LB4 plants. Since the
differences of mean DN value in indices 3, 4, and 5 between clusters C4 or C5 and C2
or C3 were large (Figure 5d), it was clear that the approach of using a five feature
space in image analysis was able to separate the infected plants from the healthy ones
when the disease was stage LB3 or above.
The original image can be classified by exporting the pixels within each cluster into

it. Figure 5e shows the results of the image classification to distinguish the diseased
plants from healthy ones in the field image. The results in Figure 5e for the diseased
plants were consistent with field ground observations at the time of imaging. The
LB4 plants were found around the two locations in the field (Figure 5e). Figure 5e
also illustrates that the LB3 plants were mainly distributed around the LB4 plants.
The healthy plants distributed around the LB3 plants. This identified infection
pattern followed the developmental stages of late blight in the field under natural
conditions. Since the disease develops along the direction from light to severe
damage, it is relatively easy to explain why the observed light diseased plants locate
around the severely diseased plants.
Following the same procedure used in the previous image analysis, Figure 6a, b, c,

and d illustrate the process of the analysis for the diseased field in Salinas Valley,
which indicated that five clusters were the best classification in this newly generated
feature space. Figure 6d showed the mean DN curves of the five clusters in the new
image that was the basis for the classification of infection severity in this field. The
detection results of late blight diseased plants are shown in Figure 6e.
Some pixels in the upper right part of Figure 6a were clearly apart from other

pixels. These were assigned as a cluster, C1. Then the space was rotated until other
pixels were all assigned. Figure 6b shows a position in which a cluster could be
identified: the cluster C2. Although this cluster had some pixels overlapping with
those scattering in the upper left part of Figure 6b, the dense distribution of most
pixels within the oval space become a cluster. After two clusters were extracted, the
remaining scattering pixels in the upper left part of Figure 6b could be identified as
an unclassified cluster. After separating the classified pixels of the two clusters out
from the space, further rotation of the space was necessary to identify the potential
distribution patterns within these unclassified pixels (Figure 6c). Based on the rela-
tive density of the pixel distribution, three sub-clusters could be identified even
though their boundaries were not as clear as expected. The cluster C3 was composed
of the pixels scattering in the upper left part and cluster C5 with the pixels in the
lower right part (Figure 6c). The pixels locating between the two extremities along
the bar belonged to cluster C4. Together with the two main clusters (C1 and C2), five
clusters were ultimately obtained for the classification of the pixels of the 5-index
image.
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After the classification, in relation to the mean DN value of each cluster for the 5
indices (Figure 6d), the clusters were associated with the various disease severities.
The cluster C1 should be soil background because the cluster had the lowest mean
DN value in the indices 3 (NIR/R), 4 (NIR)R) and 5 (NDVI) and the highest mean

Figure 6. Validation of the method to the tomato field in Salina Valley of California, (a) identification

of cluster 1, (b) clusters 1 and 2, and (c) sub-clusters 3, 4, and 5 in the 5-dimensional feature space, (d)

mean DN values of the 5 clusters in the 5 indices (indices 1 through 5 refers to R, NIR, NIR/R, NIR-

R, and NDVI, respectively, Table 1), (e) results of applying the 5 clusters to classify the images.
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DN value in index 1 (R) (Figure 6d). The cluster C2 should be the healthy plants and
the cluster C3 the light infected plants such as LB1 plants or mixed with healthy
plants. This was because clusters C2 and C3 had very close mean DN values in the
indices 3, 4 and 5, but cluster C3 had a slightly higher mean DN value than C2 in
index 1. Since most plants in the field were not infected, and cluster C2 contained
most pixels of the image, it was logical to state that this C2 cluster represented the
healthy plants. The clusters C4 and C5 had a mean DN value much lower than the
clusters C2 and C3 (Figure 6d). The mean DN values of these two clusters were
higher than the cluster C1 in the indices 3, 4 and 5 (Figure 6d). Thus, clusters C4 and
C5 were the LB3 and LB4 plants, respectively (Figure 6d).
Exporting the above classification results from visualization analysis to the

original image, we obtained the final result of image classification shown in
Figure 6e to differentiate the healthy plants from diseased plants in the field
image. As expected, most pixels were classified as healthy plants (cluster C2). The
only two patches of infected plants identified in Figure 6e have been classified as
clusters C4 and C5. Although the ground truth observation identified both pat-
ches as infected canopies at LB3, it was still possible to distinguish the slight
differences between them in the image. The left patch was slightly more severely
infected than the right one (Figure 6e). The spots along the straight lines in
Figure 6e were the locations of sprinklers for irrigation, surrounded by bare soils.
These spots were grouped as soil background. With the limited ground truth to
the background and the infected locations, the classification of pixels with
infection stages 4 and 5 as well as the background soil is very accurate. For the
selected locations with infection at stage 3, the accuracy can be above 85%.
Table 2 presents the accuracy of the classification for the 5 selected locations with
medium to severe infections (above stage 3). We had a total of 303 pixels with
infection above stage 3. Our analysis procedure correctly identified 266 of them,
with an average accuracy of 86.93% (Table 2). Thus, we can conclude that the
procedure is effective to identify the diseased plants from healthy ones when the
infection reaches to stage 3. For light infection at stages 1 and 2, it may be
difficult to obtain an accurate identification due to its similar spectral reflectance
to that of the healthy plants.
The analysis results from the two images revealed that late blight infected toma-

toes can be successfully differentiated from the healthy tomatoes using multispectral
remote sensing image when the infection reached stage 3 or above. However, under

Table 2. Accuracy of classification of the selected 5 locations with infection above stage 3

Selected location Total #of pixels Correct classification Misclassification Accuracy (%)

1 8 8 0 100.00

2 62 54 8 87.10

3 54 45 9 83.33

4 98 87 11 88.78

5 84 72 12 85.71

Sum 306 266 40 86.93
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the field condition, we also recognized that it is difficult to separate the lightly
infected tomato plants from the healthy plants.

Discussion

As early as 1950s, the possible connection between crop stress and remote sensing
measurement has been examined (Colwell, 1956; Keegan et al., 1956; Lathrop and
Pennypacker, 1980; Toler et al., 1981; Kurschner et al., 1984; Blakeman, 1990). Our
field spectral analysis revealed the possibility of spectrally discriminating the infected
plants fromhealthy plants when the infection reached stage 3 or above. Therewere two
major spectral reflectance characteristics of the infected plants: (1) spectral reflectance
is relatively higher than the healthy tomatoes in the red band and is much lower in the
NIR region; and (2) the spectral reflectance of infected plants increases in the red band
and decreases in the NIR region with infection severity (Zhang et al., 2002).
The red and NIR bands are much more sensitive to plant disease infections and are

more valuable for detecting disease infections (McDonald et al., 1998). The numeric
analysis of the vegetation indices based on red and NIR bands indicated that three
transformations could effectively enhance the separation ability of the healthy plants
from the infected tomatoes. These applicable indices included (1) the simple ratio
NIR/R, (2) the simple difference NIR)R, and (3) the normalized difference vege-
tation index (NDVI). Using each band of the new 5-index image as a vector, the
distribution patterns of the pixels were identified to distinguish healthy tomatoes
from diseased tomatoes and then to further classify the infection stages. This new 5-
index image integrated the best spectral discrimination for infections on plants and
increased the spectral differences between healthy and diseased tomatoes. Although
any of the indices alone can discriminate healthy and infected plants to a certain
degree, it is difficult to generate a threshold for the classification based on the pixel
values and the distributions of each index. This new 5-index image is able to enhance
the discrimination capability of crop disease infections because it represents the
features relating to chlorophyll and biomass of the canopies. Pest damage and dis-
ease pressures significantly change the pigment contents and biomass in the canopy.
These changes can be spectrally detected in the visible and infrared regions. The 5-
index image has been shown to successfully discriminate late blight infected tomato
canopies from healthy tomatoes.
The inference of the numeric analysis and validation of the method through image

analyses on two diseased fields indicated that we were able to successfully classify the
images into clusters representing healthy and diseased tomato plants using this 5-
index image when the infections reached stage 3 or above. Although our hope was to
detect the infection at an earlier stage, the results achieved were significant (Zhang
et al., 2002, 2003) for farmers and crop consultants to protect the disease damage to
the production. The infection at stage 3 represents the critical point at which the late
blight starts to create serious economic effects to tomato production. According to
crop consultants and farmers in Yolo County in California, economic loss of tomato
farming is usually obvious (>50%) when the infection reaches stage 4 or above.
However, the loss is much lower (<20%) if the infection is at stage 3 or less. This
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indicates that some treatments can still be done. Thus, working together with
researchers and crop consultants, farmers will be able to use the classified disease
result from multispectral remote sensing to prevent the spread of disease before
significant economic loss occurs. The benefits of using multispectral imagery for
precision disease management were clear, as also noted by Toler et al. (1981) and
Blakeman (1990). Our study provided a means for precise disease management for
tomatoes.

Conclusions

Late blight infections can be identified by remotely sensed images at resolution of
1 m when infection reached stage 3 or above. Earlier detection of the disease can be
difficult due to its similar spectral response to that of healthy plants. The developed
5-index feature vector method can enhance the separation ability for diseased plants
from healthy ones. This study provided a method of identifying late blight infection
on tomato fields in California and demonstrated the capability of utilizing multi-
spectral images in monitoring crop growth and precisely managing diseases in fields.
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